Углеродистая сталь, марки, типы, свойства и качества. Влияние компонентов на свойства стали

Углеродистая сталь, марки, типы, свойства и качества. Влияние компонентов на свойства стали

Что собой представляют углеродистые стали

Углеродистые стали представляют собой сплав железа, в котором содержание углерода до 0,6%. Количество серы и фосфора зависит от качества металла. Легирующие элементы присутствуют в незначительном количестве. Качественные характеристики зависят от количества углерода, серы, фосфора, марганца и кремния.

  • твердость;
  • свариваемость;
  • прочность;
  • вязкость;
  • упругость.

Чем больше углерода, тем выше твердость, хрупкость и хуже свариваемость.

Сферы применения углеродистых сталей

Углеродистые стали обыкновенного качества используют для изготовления двутавра, уголка, швеллера, прута, листа и другого проката. В производстве инструментов и деталей для разных областей машиностроения применяют углеродистую сталь высокого качества.

Заказать услугу
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы. Поделиться ссылкой:
Вернуться к списку
© 2022 Все права защищены. Компания «СТАЛЬМЕТ» Санкт-Петербург.
Металлопрокат

Услуги

Статьи

Компания

Доставка

Контакты

Карта сайта

Прайс лист

Калькулятор
334-91-51+7 (812)[email protected]Время работыс 9:00 до 17:00
Заказать звонок

© 2022 Все права защищены. Компания «СТАЛЬМЕТ» Санкт-Петербург.
×

Влияние углерода на структуру и свойства сталей

Влияние углерода на структуру и свойства сталей

Механические свойства углеродистой стали зависят главным образом от содержания углерода. С ростом содержания углерода в стали увеличивается количество цементита и соответственно уменьшается количество феррита, т.е. повышаются прочность и твердость и уменьшается пластичность. Прочность повышается только до 1% С, а при более высоком содержании углерода она начинает уменьшаться. Происходит это потому, что образующаяся по границам зерен в заэвтектоидных сталях сетка вторичного цементита снижает прочность стали.

С увеличением содержания углерода в структуре стали увеличивается количество цементита – очень твердой и хрупкой фазы. Твердость цементита превышает твердость феррита примерно в 10 раз (800HB и 80HB соответственно). Поэтому прочность и твердость стали растут с повышением содержания углерода, а пластичность и вязкость, наоборот, снижаются .

Читайте также:  Балка: сущность, основные виды, целесообразность использования, рекомендации

При повышении содержания углерода до 0,8% увеличивается доля перлита в структуре (от 0 до 100%), поэтому растут и твердость, и прочность. Но при дальнейшем росте содержания углерода появляется вторичный цементит по границам перлитных зерен. Твердость при этом почти не увеличивается, а прочность снижается из-за повышенной хрупкости цементитной сетки.

C увеличением содержания углерода в стали изменяются и физические свойства: снижается плотность, повышаются удельное электросопротивление и коэрцитивная сила, понижаются теплопроводность и магнитная проницаемость.

Кроме того, увеличение содержания углерода приводит к повышению порога хладноломкости: каждая десятая доля процента повышает t50 примерно на 20є. Это значит, что уже сталь с 0,4%С переходит в хрупкое состояние примерно при 0ºС, т. е. менее надежна в эксплуатации.

Углерод в железоуглеродистом сплаве находится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в чугунах. С увеличением содержания углерода возрастает твердость, прочность и уменьшается пластичность.

Влияет содержание углерода и на все технологические свойства стали: чем больше в стали углерода, тем она труднее обрабатывается резанием, хуже деформируется (особенно в холодном состоянии) и хуже сваривается.

От каких факторов зависят свойства углеродистых сталей?

Свойства углеродистых сталей зависят от содержания углерода, а также от содержания постоянных и скрытых примесей При одинаковом содержании углерода кипящие, полуспокойные и спокойные стали имеют близкие величины прочностных свойств и различаются значениями характеристик пластичности. Содержание кремния в спокойной стали составляет 0,15-0,35%, в полуспокойной — 0,05-0,15%, в кипящей — до 0,05%.

Влияние содержания углерода на механические свойства сталей.

7.2. 1. Как зависят свойства углеродистых сталей от содержания углерода?

Читайте также:  Строение и основные свойства металлов и сплавов

Углерод является важнейшим элементом, определяющим структуру и свойства углеродистой стали. Даже малое изменение содержания углерода оказывает заметное влияние на свойства сталей. С увеличением углерода в структуре стали растет содержание цементита.. При содержании до 0,8% С сталь состоит из феррита и перлита, при содержании более 0,8%С в структуре стали кроме перлита появляется структурно свободный цементит. Феррит имеет низкую прочность, но сравнительно пластичен. Цементит характеризуется высокой твердостью, но хрупок. Поэтому с ростом содержания углерода увеличивается твердость и прочность и уменьшается вязкость и пластичность стали (рис.1).

Рис. 1. Зависимость механических свойств стали от содержания углерода.

Рост прочности происходит при содержании в стали до 0,8-1,0% С.

7.2. 2. Чем обусловлен рост прочности до 0,8 –1,0%С?

При содержании до 0,8% С сталь состоит из феррита и перлита, при содержании более 0,8%С в структуре стали кроме перлита появляется структурно свободный цементит. Феррит имеет низкую прочность, но сравнительно пластичен. Цементит характеризуется высокой твердостью, но хрупок. Поэтому с ростом содержания углерода увеличивается твердость и прочность и уменьшается вязкость и пластичность

7.2. 3. Почему при увеличении содержания углерода более 1,0% С уменьшается не только пластичность, но и прочность стали? Это связано с образованием сетки хрупкого цементита вокруг перлитных зерен, легко разрушающейся при нагружении.

Какое влияние оказывает углерод на технологические свойства?

Углерод оказывает существенное влияние на свариваемость, обрабатываемость давлением и резанием. С увеличением содержания углерода ухудшается свариваемость, а также способность деформироваться в горячем и особенно в холодном состоянии. Лучше всего обрабатывается резанием среднеуглеродистые стали, содержащие 0,3-0,4%С. Низкоуглеродистые стали при механической обработке дают плохую поверхность и трудноудаляемую стружку. Высокоуглеродистые стали имеют повышенную твердость, что снижает стойкость инструмента.

7.3. Влияние примесей на свойства стали

7.3.1. Назовите постоянные и скрытые примеси в углеродистых сталях?

Постоянными примесями в углеродных сталях являются марганец, кремний, сера, фосфор, а скрытые примеси – газы: кислород, азот, водород.

Охарактеризуйте влияние марганца

Полезными примесями являются марганец и кремний. Их вводят в сталь в процессе выплавки для раскисления:

Fe+Mn → MnO+Fe; 2FeO+Si → SiO2+2Fe/

Читайте также:  Соединения углерода — формулы, свойства и применение

В углеродистой стали содержится до 0,8% Mn. Марганец, помимо раскисления, в этих количествах полностью растворяется в феррите и упрочняет его, увеличивает прокаливаемость стали, а также уменьшает вредное влияние серы, связывая еетугоплавкие сульфиды:

FeSв +Mn → MnS+Fe.

7.3.3. Охарактеризуйте влияние кремния?

В полностью раскисленной углеродистой стали содержится до 0,4%Si. Кремний является полезной примесью, так как эффективно раскисляет сталь и, полностью растворяясь в феррите, способствует его упрочнению.

7.3.4. Охарактеризуйте влияние серы?

Сера является вредной примесью. Основной источник серы в стали – исходное сырье (чугун). Сера снижает пластичность и вязкость стали, а также сообщает стали красноломкость при прокатке и ковке. Сера нерастворима в стали. Она образует с железом соединение FeS – сульфид железа, хорошо растворимый в металле. При малом содержании марганца благодаря высокой ликвации серы в стали может образоваться легкоплавкая эвтектика Fe-FeS

(tпл =988 ºC). Эвтектика располагается по границам зерен. При нагреве стальных заготовок до температуры горячей деформации включения эвтектики сообщают стали хрупкость, а при некоторых условиях могут даже плавиться и при деформировании образовывать надрывы и трещины. Поэтому содержание серы в стали должно быть как можно меньше.

Повышенное (до 0,2%) содержание серы допускается лишь в автоматных сталях для изготовления крепежных деталей неответственного назначения, так как сера улучшает обрабатываемость стали.

7.3.5. Какой элемент вводят для устранения вредного влияния серы?

Марганец устраняет красноломкость, так как сульфиды марганца не образуют сетки по границам зерен и имеют температуру плавления около 1620 ºC, что выше температуры горячей деформации. Вместе с тем сульфиды марганца, как и другие неметаллические включения, также снижают вязкость и пластичность, уменьшают усталостную прочность стали.

7.3.6. Охарактеризуйте влияние фосфора?

Основной источник фосфора – руды, из которых выплавляется исходный чугун. Фосфор является вредной примесью. Растворяясь в феррите до 1,2%, фосфор уменьшает его пластичность. Фосфор резко отличается от железа по типу кристаллической решетки, диаметру атомов и их строению. Поэтому фосфор располагается вблизи границ зерен и способствует их охрупчиванию, повышая температурный порог хладноломкости.

Читайте также:  Как ламинировать бумагу, документы, визитки, рисунки в домашних условиях. Модернизация выпарных станций. Опыт АЦБК

7.3.7. Охарактеризуйте влияние скрытых примесей.

Скрытые примеси – кислород, азот, водород – присутствуют в стали либо в виде твердого раствора в феррите, либо в составе химических соединений (нитриды, оксиды), либо в свободном состоянии в порах металла. Кислород и азот мало растворимы в феррите. Они загрязняют сталь хрупкими неметаллическими включениями, что снижает вязкость и пластичность стали. Водород находится в твердом растворе и особенно сильно охрупчивает сталь. Повышенное содержание водорода, особенно в хромистых и хромоникелевых сталях, приводит к образованию внутренних трещин – флокенов.

Даже небольшие концентрации газов оказывают резко отрицательное влияние на свойства, ухудшая пластические и вязкие характеристики стали. Поэтому вакуумирование является важной операцией для улучшения свойств стали. Кроме того, в углеродистых сталях присутствуют такие случайные примеси, как Cr, Ni, Cu, наличие которых обусловлено загрязненностью шихты.

Читайте также:  Классические методы чугунного литья

Сущность процесса улучшения стали

После закалки стали в ней преобладают структуры мартенсита. Высокий отпуск стали заключается в нагреве, как минимум, на 20-40°C ниже точки Ac1 (см. Диаграмму железо-углерод), но не ниже 500°C, выдержке и контролируемом охлаждении детали.

Улучшение сталей на диаграмме железо-углерод

Читайте также:  Сварка нержавеющей стали (нержавейки) – основные моменты

На втором этапе улучшения сталей – процессе высокого отпуска стали – происходит диффузионный распад мартенсита до образования сорбита отпуска (см. Элементы теории термической обработки). Сорбит отпуска имеет однородную и дисперсную структуру.

Влияние нитрид ванадия на свойства стали

№ п/п Свойства Описание Параметр
1 Механические свойства Обозначение в марке стали АФ
2 Предел прочности Значительно повышает
3 Предел текучести Значительно повышает
4 Относительное удлинение Снижает
5 Твердость Повышает
6 Ударная вязкость Не оказывает заметного влияния
7 Усталостная прочность Повышает
8 Технологические свойства Свариваемость Не оказывает заметного влияния
9 Коррозионная стойкость Повышает
10 Хладостойчивость Не оказывает заметного влияния
11 Красноломкость Не оказывает заметного влияния

Какие свойства у стали с разным содержанием углерода?

Механические свойства стали зависят от количества углерода. Увеличение или снижение содержания углерода, даже в сотых долях процента, предопределяет сферу применения металла. Структура углеродистой стали меняется от содержания цементита и феррита. Когда в сталь добавляют больше углерода, сплав становится твердым, прочным и упругим. Когда уменьшают, улучшают ее пластичность и сопротивление удару.

В зависимости от того, сколько углерода в составе сплава, различают несколько видов стали:

  • Низкоуглеродистые содержат меньше 0,25 % углерода. Пластичные, но легко деформируемые. Обрабатываются в холодном состоянии и под действием высокой температуры.
  • Среднеуглеродистые — 0,3-0,6 %. Пластичные, текучие и среднепрочные. Из них изготавливают детали и конструкции, которые будут использовать в нормальных условиях.
  • Высокоуглеродистые — 0,6-2 %. Износостойкие, прочные и дорогие углеродистые стали с низкой вязкостью. Плохо поддаются сварке без предварительного разогрева обрабатываемой зоны до +225оС.

Низкоуглеродистые и среднеуглеродистые стали обрабатывать и варить проще, чем высокоуглеродистые.

Общие характеристики

Углеродистая сталь делится на 3 группы по требованиям к химическому составу и механическим свойствам. Обозначение буквенное. Определяющим для группы является:

  • А — механические свойства;
  • Б — химический состав;
  • В — строго выдерживается химсостав и основные механические свойства.

Сплавы группы В проверяются на химию, и во время разлива с ковша берется образец для проверки механических характеристик — предел прочности на растяжение и изгиб, ударная вязкость. Твердость регулируется термообработкой.

Состав химических элементов

Основной элемент — железо. Отношение к группе определяется количеством углерода. Содержание неметаллических включений фосфора и серы ухудшает механические качества. Они способствуют красноломкости и хладоломкости, образованию трещин в горячем и холодном металле.

Коррозионная устойчивость обеспечивается низким содержанием углерода и добавлением хрома. Количество химических элементов в углеродистой стали марганца и кремния зависит от способа раскисления и класса качества. Марганец может присутствовать в пределах 1,2% в сплавах нормального качества, до 1,8% в высококачественных. Содержание кремния не превышает 0,3%.

Высококачественные стали группы В проверяют по свойствам и химическому составу. Допустимое количество неметаллических включений — 0,03–0,0018%.

От количества углерода зависит твердость стали, ее способность к закалке и свариванию.

Чем ниже показатель углерода, тем лучше варится металл. Ст 40Х требует подогрева перед сваркой, Ст 6 — нагрева до 700⁰ и послесварочного отпуска. Прокаливаемость наоборот. До Ст4 сплавы не калятся, не изменяют свою твердость. Сталь 40х может потрескаться при резком охлаждении в воде.

Читайте также:  Лучшие способы чистки в домашних условиях изделий из латуни

Нагрев стали
Нагрев стали

Что дает углевод который содержится в стали

  • Сварка чугуна
  • Сварка металлов в домашних условиях
  • Часто задаваемые вопросы по Сварке Металлов

Количество цементита будет увеличиваться, как только рост содержания углерода в стали пойдет вверх. При этом доля феррита будет одновременно снижаться. Если между составляющими будет изменено соотношение, то пластичность уменьшится, а прочность и твердость повысится. Прочность будет повышаться до тех пор, пока содержание углерода будет в 1%, но после этого она обязательно уменьшится, потому что будет образовываться цементитная грубая сетка.

Если говорить простым русским языком, то углерод имеет прямое влияние на свойства вязкости. Если в сплаве увеличить количество углерода, то изделие не будет поддаваться резкой ломкости, а ударная вязкость снизится.

Кроме того, есть и другие процессы, которые может вызвать увеличение состава углерода:

  • — повысится электросопротивление;
  • — увеличивается коэрцитивная сила;
  • — проницаемость магнитов будет снижена;
  • — индукция магнитов станет не такой плотной.

Кроме того, нужно помнить и о том, что углерод может повлиять и на технологические процессы. Кроме всех положительных моментов, описанных выше, литейные свойства стали будут значительно ухудшены как только в составе повысится содержание углерода. Более того, свариваемость будет значительно хуже и резать и обрабатывать давлением такие стали будет значительно труднее. Но, это не значит, что если в стали не будет содержаться углерод, то с ней не будет возникать никаких проблем. Стали, в которых будет маленькое содержание углерода, также будут плохо резаться.

Но, кроме углерода в стали могут содержаться и другие примеси, о которых также нужно обязательно помнить. Делятся такие примеси на три постоянные группы:

1. Стандартные. Сюда относятся кремний, сера, фосфор, марганец. При этом первый и последний считаются примесями технологического типа. Эти примеси вводят в самом процессе выплавки стали, чтобы она раскислилась.

2. Скрытые. Сюда относятся газы такие, как кислород, водород, азот. Они будут попадать в сталь непосредственно уже при выплавке. Благодаря им будет снижено сопротивление хрупкому разрушению.

3. Спец- примеси. Такие примеси вводят в сталь зависимо от того, какие свойства в результате вы от нее ожидаете. Ознакомиться с такими примесями можно у консультантов специализированных компаний, чтобы определиться с тем, что именно вам понадобится для улучшения и закрепления, так сказать, результата.

Таблица изменений структуры металла при Феррите и перлите

Для справки:

Легированные элементы – это примеси, о которых было описано выше, а стали – это легированные стали. Очень многие путают понятия, из-за чего в последствии возникают проблемы непосредственно в работе.

Тщательно подготовьтесь в рабочему процессу, чтобы в результате не получить некачественное выполнение, которое придется доделывать или вовсе – исполнять с ноля.

  • Чем отличается аргонная, аргонно дуговая и газовая сварка
  • Для чего нужен защитный газ при сварке
  • Как расшифровывается TIG, MIG-MAG, MMA сварка

Как начать варить аргоном TIG ТИГ сварка алюминия

Новые свойства и преимущества сплава

Углерод в составе стали дает ей дополнительные преимущества, прежде всего это:

  • достаточная твердость поверхностного слоя и относительная мягкость внутреннего слоя;
  • хорошая обрабатываемость;
  • долговечность;
  • доступная цена.

С увеличением доли углерода возрастает твердость, прочность и уменьшается пластичность, следовательно, чем его больше, тем труднее процесс обработки резанием, хуже показатели деформации и сваривания. Исходя из этого выделяют следующие виды стали:

  1. Низкоуглеродистые, с долей менее 0,25%. Они достаточно пластичны, легко поддаются деформации и обработке.
  2. Среднеуглеродистые, с долей 0,3-0,6%. Этот вид также пластичен, имеет средний показатель прочности.
  3. Высокоуглеродистые, с долей 0,6-2%. С низкой вязкостью и высоким показателем прочности. Сварка производится только с предварительным разогревом до 225 градусов.
Читайте также:  10 самых крупных металлургических комбинатов в России. 10 самых крупных металлургических комбинатов в России

влияние углерода на свойства стали фото

Помимо основных механических свойств, увеличение содержания углерода дает повышение порога хладноломкости.

Классификация по степени раскисления

По степени раскисления углеродистые сплавы делятся на такие типы:

  • кипящие;
  • спокойные;
  • полуспокойные.

Кипящие сплавы обыкновенного качества сразу после внесения раскислителя выпускаются из печи. В отдельных случаях раскисление производится в ковше. В результате в под коркой образуется много воздушных пузырьков.

У инструментальных сплавов реакция раскисления начинается до разлива и полностью заканчивается при заливке в ковш.

Кипящие стали используют для производства слитков, слябов и блюмсов — проката крупного сечения. В дальнейшем происходит переплавка их на высококачественный металл в электрических печах или переделка на прокат меньшего диаметра — круг, квадрат. Воздух в процессе переработки выходит, зерно вытягивается вдоль, увеличивая механические свойства стали. Полуспокойные стали отличаются повышенной ковкостью.

Классификация углеродистых сталей | Матвед 4

Влияние других примесей

Как и углерод, иные химические элементы в составе стали влияют на ее механические свойства:

  • кремний – используется как активный раскислитель;
  • марганец – снижает влияние кислорода и серы, уменьшает стойкость к нагрузкам;
  • сера и фосфор – увеличивают показатель красноломкости, относятся к категории вредных примесей;
  • титан – улучшает показатели прочности и пластичности;
  • хром – повышает жаростойкость и стойкость к стиранию;
  • никель – улучшает вязкость и упругость;
  • медь – оказывает влияние на стойкость к коррозии.

Механические свойства стали полностью зависят от ее состава и наличия тех или иных примесей. Именно эти характеристики необходимо учитывать при применении стали в промышленном производстве. Некоторое негативное влияние содержания элементов можно снизить дополнительными методами улучшения – термическим упрочением поверхности (цементация) или добавлением антикоррозийной защиты, проще говоря – гальваника, покрытие которой увеличивает срок службы изделия.

Методы производства и различия по качеству

По методам производства сплавы делятся на три типа:

  • мартеновские;
  • конвекторные;
  • в электропечах.

Способ производства и разделение по качеству указывается в сертификате на металл и может обозначаться буквенно в конце маркировки. Например, ВД — электродуговой переплав, Ш — шлаковый переплав.

Мартеновские с наиболее низким качеством идет на переделку и прокат группы А. В электропечах производится сплав высокого и очень высокого качества.

Чем отличаются инструментальные и конструкционные стали?

Сфера применения и способ изготовления — главные отличия сталей. Конструкционные углеродистые стали выплавляют в конвертерах и мартеновских печах. Они бывают высокого и обыкновенного качества. Их разделяют на группы А, Б и В. Маркируют соответственно буквами и цифрами. В обозначении буква говорит о группе стали, а цифры указывают на содержание углерода, увеличенное в 100 раз. Чем больше значение, тем прочнее сталь. Стали обыкновенного качества с повышенным содержанием марганца маркируются буквой «Г».

Сталь группы А поставляют по механическим свойствам, группы Б — по химическому составу, группы В — по механическим свойствам и химическому составу. Это означает, что сталь группы А обладает заявленными свойствами, а сталь группы Б отвечает нормативной документации.

Углеродистую инструментальную сталь выплавляют в мартеновской или электрической печи. Она бывает спокойной, полуспокойной и кипящей. Ее разделяют на качественную и высококачественную сталь. Доля примесей в качественной инструментальной стали регламентирована: серы должно быть не более 0,4 %, фосфора — не больше 0,6 %. Цифра в маркировке говорит о содержании углерода в сотых долях. Также она обозначает условный номер марки материала.

Технология изготовления углеродистых сталей

Зная содержание углерода в металле, важно также понимать, что это позволяет использовать в металлургии различные методы производства углеродистых сталей, для каждого из них используется особое оборудование.

Углерод в металле

Специалисты выделяют несколько типов печей, применяемых для этих нужд:

  • конверторные плавильные;
  • мартеновского типа;
  • электрические.

Конверторные печи расплавляют все компоненты сплава, после чего смесь проходит обработку техническим кислородом. В горячий металл вносят известь, чтобы удалить присутствующие примеси, превратив их в шлак. Процесс производства сопровождается активным окислением металла, из-за чего выделяется большое количество угара.

Использование конверторных печей для изготовления углеродистых сталей требует установки дополнительных фильтровальных систем, поскольку во время работы образуется много пыли. А монтаж дополнительного оборудования всегда чреват значительными финансовыми затратами.

Однако этот недостаток не мешает конверторному методу активно использоваться на металлургических производствах, так как специалисты ценят его за высокую производительность.

Печи мартеновского типа обеспечивают высокое качество различных марок стали. Здесь производство металла с содержанием углерода состоит из таких этапов:

  1. в отдельный отсек печи загружают чугун, стальной лом, пр.;
  2. металл нагревается до значительной температуры;
  3. составляющие будущего сплава превращаются в однородную горячую массу;
  4. происходит химическая реакция между компонентами в процессе плавления;
  5. готовый металл поступает из печи.

Электрические печи предполагают совершенно иной подход к производству: отличается способ нагрева материалов. Благодаря использованию электричества снижается окисляемость металла в процессе разогрева, из-за чего в сплаве сокращается доля водорода. Это позитивно отражается на структуре и качестве готовой стали.

Изменение структуры стали с увеличением содержания углерода

“Пройдемся” вдоль оси содержания углерода на участке диаграммы состояния системы железо-углерод, которая соответствует сталям (рисунок 1): от 0 до 2 % углерода.

Рисунок 1 – Двойная диаграмма состояния железо-углерод

Феррит

Структура стали, содержащей от 0 до 0,02 % углерода, включает феррит и третичный цементит (рисунок 2).

Рисунок 2 – Микроструктура стали: феррит с третичным цементитом по граница зерен

Феррит и перлит

Дальнейшее увеличение содержания углерода приводит к появлению нового структурного компонента – эвтектоидного феррита и цементита (перлита). Сначала перлит появляется как отдельный включения между ферритными зернами, а затем, при содержании углерода 0,8 %, занимает весь объем. Перлит представляет собой двухфазную смесь, которая обычно имеет пластинчатую структуру (рисунок 3).

Рисунок 3 – Микроструктура перлита в стали

Перлит и цементит

Когда содержание углерода поднимается выше 0,8 %, наряду с перлитом образуется вторичный цементит. Вторичный цементит выделяется в форме игл (рисунок 4).

Рисунок 4 – Микроструктура стали: вторичный цементит (иглы) и перлит

Количество цементита возрастает с увеличением содержания углерода. При содержании углерода 2 % цементит занимает 18 % поля зрения микроскопа. При содержании углерода более 2 % формируется эвтектическая смесь.

Особенности маркировки

Маркировка углеродистых сталей имеет буквенно-цифровое значение и на торце проката обозначается определенным цветом. Ст в начале означает нормальное качество. Затем идет цифра, указывающая количество углерода и способ раскисления.

Для материала с повышенным качеством обозначение начинается со слова Сталь, затем углерод в сотых долях и буквенное обозначение легирующих элементов.

Высококачественные обозначаются в конце буквой А. Специальные, высокоуглеродистые, инструментальные — У, быстрорежущие — Р.

Маркированная углеродистая сталь
Маркированная углеродистая сталь

Читайте также:  Технология сварки нержавеющей стали. Влияние легирующих элементов и подбор способа сварки

Как расшифровать маркировку сталей

Марку углеродистой стали и группу ее качества можно определить по типу маркировки. Каждая цифра и буква имеет свое значение и показывает требования к качеству, степень раскисления, наличие легирующих элементов.

Например, для сплава обычного качества:

  • Ст 2 кп — нормального качества с содержанием углерода 0,09–0,15%, кипящая, марганца 0,25 — 0,50%, кремния менее 0,05%;
  • Ст3Г пс — содержание углерода в пределах 0,14–0,22%, полуспокойная, марганца в пределах 0,80–1,1%, кремния не более 0,15%.

Углеродистые стали повышенного качества маркируются цифрами (содержание углерода в сотых долях) и буквами (легирующий элемент). Например:

  • 45 — 0,45% углерод;
  • 40ХН — углерода 0,4%, хрома и никеля менее 2%.

Расшифровка высокоуглеродистых марок имеет букву, указывающую тип материала, его применение и цифру — процент углерода в десятых долях. Инструментальные сплавы имеют обозначение У. Например:

  • У8 — инструментальная, 0,8% углерода;
  • У12 — содержание углерода 1,2%.

Химический состав более точно можно определить по таблице в справочнике металлурга.

Прокат на торце маркируется цветной полосой:

  • красный — Ст3;
  • желтый — Ст2;
  • зеленый — СТ5;
  • синий — Ст6.
Читайте также:  10 самых крупных металлургических комбинатов в России. Топ-15: Самые крупные заводы в мире

Для каждого типа стали имеется своя маркировка. Легированные могут содержать до 3 цветных полос.

Маркировка стали для ножа, расшифровка марки стали для ножа, свойства легированной стали для ножа

Углеродистая сталь

Углеродистой называют нелегированную сталь, содержащую 0,04…2% углерода. Кроме того, в состав такой стали входят постоянные примеси, неизбежно присутствующие в ней в связи с условиями производства: до 1% марганца, до 0,4 кремния, до 0,07 серы, до 0,09% фосфора.

Рис. 10. Схемы микроструктур стали в равновесном состоянии: а — ферритной, б — ферритно-цементитной, в — ферритноперлит-ной, г — перлитной, д — перлитно-цементитной; 1 — феррит, 2 — цементит, 3— перлит

Структура и свойства углеродистой стали зависят от содержания углерода и скорости охлаждения. Медленно охлажденные стали характеризуются равновесными структурами, не изменяющимися при последующем нагреве вплоть до температуры 728 °С. Быстрое охлаждение приводит к образованию неравновесных структур, которые при последующем нагреве стремятся перейти в равновесные. Среди структурных составляющих медленно охлажденной стали выделяют феррит, цементит и перлит (рис. 10).

Феррит – твердый раствор углерода (до 0,02% ) в железе. По свойствам близок к чистому железу. Твердость феррита НВ60…80, предел прочности при растяжении 250 МПа. Феррит мягок и пластичен.

Цементит — карбид железа Fe3C — химическое соединение, содержащее 6,67% углерода. Характеризуется высокой твердостью (НВ700…800) и хрупкостью.

Перлит — механическая смесь феррита и цементита. Вследствие упрочняющего влияния цементита перлит обладает более высокой прочностью и твердостью, чем феррит, но менее пластичен.

По мере возрастания количества углерода изменяются соотношения между отдельными структурными составляющими. Это сказывается на свойствах стали. При содержании углерода до 0,006% структура стали образована чистым ферритом (рис. 10,а). Прочность такой стали сравнительно невелика, зато она обладает высокой пластичностью и ударной вязкостью. Если количество углерода увеличить до 0,025%, появится новая структурная составляющая — цементит, который локализуется по границам зерен феррита (рис. 10,6). Хрупкая цементитная сетка снижает ударную вязкость стали. Структура стали с содержанием углерода более 0,025% представлена ферритом и перлитом, причем доля перлита тем больше, чем выше концентрация углерода (рис. 10,в). С повышением содержания перлита возрастают прочность и твердость стали, а относительное удлинение и ударная вязкость уменьшаются.

Структура стали, содержащей ровно 0,8% углерода, представлена только перлитом (рис. 10,г). Если концентрация углерода превышает 0,8%, в структуре появляется цементит, располагающийся по границам зерен пердита (рис. 10, д). При содержании углерода около 1% хрупкий цементит образует сетчатую структуру. Это снижает прочность стали и делает ее хрупкой.

Влияние состава и структуры на некоторые механические свойства стали графически изображено на рис. 11. С повышением концентрации углерода твердость стали закономерно возрастает, относительное удлинение уменьшается; прочность же возрастает до некоторого предела (0,8… 1%), а затем падает.

Значительное влияние на свойства стали оказывают примеси. Кремний и марганец увеличивают проч-стали относительно небольшое. Фосфор и сера — вредные примеси в стали при любой их концентрации. Сера снижает механические свойства и вызывает красноломкость стали. Фосфор значительно увеличивает хрупкость стали,особенно при отрицательной температуре (т. е. вызывает хладноломкость). Полное удаление из стали фосфора и серы сопряжено с большими затратами топлива и энергии, поэтому на практике ограничивают их содержание до безопасных пределов.

Углеродистые стали классифицируют по способу производства и назначению.

По способу производства различают мартеновскую, кислородно-конвертерную, бессемеровскую и электросталь.

По назначению углеродистые стали разделяют на конструкционные и инструментальные.

Конструкционные стали содержат углерода не более 0,65% . Их применяют для изготовления арматуры железобетонных конструкций. Используемые в строительстве конструкционные углеродистые стали подразделяют на стали обыкновенного качества, качественные и специальные.

Рис. 11. Графики зависимости механических свойств стали от содержания углерода:

Сталь углеродистая обыкновенного качества (ГОСТ 380—71*) подразделяют на группы А, Б, В, учитывающие условия поставки. Сталь группы А поставляют потребителям по механическим свойствам: пределам прочности и текучести, относительному удлинению, способности к изгибу в холодном состоянии. В стали группы Б нормируют химический состав, а группы В — одновременно химический состав и механические свойства.

Каждая группа включает несколько марок стали— от Ст0 до Ст6. С увеличением номера возрастает прочность стали и уменьшается ее пластичность. Сталь марок от Ст1 до Ст4 выпускают кипящей, полуспокойной, спокойной, марок Ст5 и Стб — полуспокойной и спокойной. Указание о степени раскисления стали делают в виде индекса: кп — кипящая; пс — полуспокойная; сп — спокойная. Стали марок Ст3Гпс, Ст3Гсп и Ст5Гпс содержат повышенное количество марганца, на что указывает буква Г.

Сталь группы Б изготовляют тех же марок, что и сталь группы А, но в начале обозначения марки вводят букву Б, например сталь БСт1кп. Для сталей группы А букву впереди марки не ставят.

К сталям группы В предъявляют дополнительные требования по ударной вязкости при нормальной и пониженной температурах.

В обозначении марок сталей всех групп вводят также цифры от 1 до 6, характеризующие категорию стали. Категория определяется совокупностью механических свойств стали либо особенностями ее химического состава. Цифру 1 в сталях первой категории не указывают.

Примеры обозначения марок стали: Ст3кп — группа А, сталь 3, кипящая, категория 1; БСт2пс2 — группа Б, сталь 2, полуспокойная, категория 2; ВСт2спЗ — группа В, сталь 2, спокойная, категория 3.

В строительстве используют стали всех групп. Наиболее пластичные стали Ст1 и Ст2 применяют в конструкциях резервуаров, трубопроводах. Из стали СтЗ, Ст4 и Ст5 изготовляют строительные конструкции, а также арматуру для железобетона. В большом количестве углеродистая сталь обыкновенного качества расходуется на изготовление листового, круглого, уголкового, швеллерного, двутаврового проката.

Сталь качественная конструкционная (ГОСТ 1050—74**) содержит по сравнению со сталью обыкновенного качества меньше серы и фосфора (до 0,04% каждого). Сталь весьма однородна по составу. Благодаря этим особенностям она характеризуется более высокими механическими свойствами.

В обозначении марок стали ставят двузначные цифры, показывающие среднее содержание углерода в сотых долях процента. Например, марка 45 означает, что сталь содержит 0,42…0,50% углерода. Качественные стали выпускают марок от 05 до 85. Сталь марок 20…45 используют для анкерных колодок и клиньев при натяжении арматуры.

Кроме того, выпускают углеродистые качественные стали с повышенным содержанием марганца — 15Г, 20Г…70Г, где буква Г означает, что в их состав входит 0,7…1,2% марганца.

Специальные стали характеризуются однородной мелкозернистой структурой. В изделиях не должно быть внешних дефектов — раковин, трещин, пор. Из стали изготовляют, в частности, металлические конструкции мостов.

Инструментальные качественные углеродистые стали содержат 0,65…1,35% углерода. Эти стали маркируют так: буква У и цифры показывают среднее содержание углерода в десятых долях процента. Выпускают их марок У7, У8…У13. Содержание марганца в этих сталях не более 0,4, кремния — 0,35, серы — 0,03 и фосфора — 0,035%. Кроме того, выпускают высококачественные стали, содержащие еще меньше серы и фосфора. В обозначениях марок высококачественных сталей в отличие от качественных добавляют букву А, например сталь У7А, У8А.

Читать далее: Теплоизоляционные материалы Основные свойства строительных материалов Фиксаторы арматуры Материалы для смазывания форм Сборные бетонные и железобетонные конструкции Арматурные изделия и закладные детали Проволочная арматура Стержневая арматура Классификация арматуры и технические требования к сталям Обработка давлением

Читайте также:  Тигель для плавки свинца (механический и электрический клапан)