В какой группе находятся самые твердые металлы. Самый твердый металл в мире: название и другие свойства. Интересные факты о вольфраме. Самые прочные металлы в мире

В какой группе находятся самые твердые металлы. Самый твердый металл в мире: название и другие свойства. Интересные факты о вольфраме. Самые прочные металлы в мире

Физико-химические параметры титана

Полностью без примесей данный элемент первый раз выведен в Швеции в 1825 году. Это сделал химик с известной фамилией Берцелиус. Титан — это металл небольшого веса серебристо-белого оттенка. У него малая молекулярная масса. Она равна всего 22. Данный элемент отличается следующими характеристиками:

  1. Плотность — пока материал находится в твердом состоянии до достижения точки кипения 4,51 г/куб. см. В виде жидкости плотность имеет другое значение — 4.12 г/куб.см
  2. Параметры плавления — 1668°С.
  3. Параметры кипения — 3227°С.
  4. Упругость у титана небольшая, что считается его существенным недостатком.
  5. Твердость по шкале НВ имеет показатель 103. Он может меняться в зависимости от наличия примесей в веществе и достигать более высоких показателей.
  6. В стандартных условиях рассматриваемый металл практически не ржавеет, что является его неоспоримым преимуществом.
  7. По биологическим показателям это совсем инертный материал, поэтому активно используется в медицине. Инертность может уменьшаться при повышении температуры. Например, при +200°С металл успешно поглощает водород и изменяет все свои характеристики.
  8. Мало и тяжело проводит ток.

Если брать за образец шкалу МООСА, то по твердости титан имеет оценку 4.5. Это указывает на то, что это не самый твердый металл. Но из имеющихся твердых он используется чаще всего.

самый твердый металл в мире

Читайте также:  Ремонт коллектора своими руками гальваническим наращиванием

Применение титана

Данное вещество получило очень широкое применение практически во всех областях промышленности. На данный момент титан с успехом используется:

  1. Авиационная промышленность — многие детали самолета подвергаются воздействию высоких температур и сильных деформирующих сил. Именно поэтому части шасси, заклепки, различные силовые элементы корпуса делают из титана.
  2. Космическая техника. Также производят многие детали космических кораблей, особенно их обшивки.
  3. Кораблестроение.
  4. Нефтегазовая промышленность. Здесь титан используется для изготовления бурящих труб, насосов с высоким давлением.
  5. Строительство. Здесь твердый металл нужен для разных видов обшивки зданий, кровля, памятники.
  6. Медицина — многие видов протезов, а также инструменты.
  7. Спорт — инвентарь, детали для велосипедов, турники, спортивные принадлежности.
  8. Производство химических веществ. Материал просто не заменим в тех случаях, когда нужно прочное вещество, которое не будет реагировать с кислотами. Поэтому в химической промышленности из титана делают самые разные обменники, конструкции и трубы.

Применение титана

При всей своей твердости материал по весу отличается легкостью. Поэтому столь широко применение данного вещества во всех областях промышленности. Он в течение долгого времени не изнашивается, не деформируется.

См.также: Все о самых дорогих в мире



Титан






Титановые сплавы


!! Такие сплавы чрезвычайно лёгкие и обладают высокой стойкостью к коррозии. Из-за этих свойств сплавы широко используются в кораблестроении.
При всех достоинствах титановых сплавов, они очень дорогие, а потому применение сильно ограничено в гражданском производстве. В основном материал используют в производстве военных судов и ледоколов.


Осмий

В список твердейших металлов также входит осмий. Он является элементом, входящим в платиновую группу, и по своим свойствам схож с иридием. Этот тугоплавкий металл устойчив к воздействиям агрессивной среды, имеют большую плотность, и плохо поддается обработке. Открыл его ученый Смитсон Теннант из Англии в 1803 году. Этот металл широко применяется в медицине. Из него изготовлены элементы электрокардиостимуляторов, он также применяется при создании клапана легочного ствола. Он широко применяется также в химической промышленности и в военных целях.

Осмий

Осмий

Читайте также:  Художественное травление меди. Перевод рисунка на металл

Особенности чистого вещества и его примесей

Еще одна характерная особенность материала — парамагнитность. Такое вещество не притягивается магнитным полем, но и не способно выталкиваться из него. Для производственных процессов титан стараются применять в максимально чистом виде без добавки примесей, поскольку именно так он выдерживает максимальные нагрузки.

Любые примеси неметаллов к титану, делают стандартный материал более ломким. Металлические примеси значительно снижают его жаропрочность. Титан даже с минимумом примесей является техническим. Обычно именно такая разновидность наиболее устойчива к воздействию коррозии.

Важно. Удивительным свойством материала является то, что минимальные добавки других веществ кардинальным образом меняют известные характеристики титана.

Если сравнивать с другими часто используемыми элементами, то титан в 2 раза прочнее железа и в 6 раз прочнее алюминия. Рассматриваемый металл очень легко противостоит коррозии. Его антикоррозийные показатели значительно лучше, чем у алюминия и нержавеющей стали.

Как получают титан?

По распространению в природу рассматриваемый материал стоит на 10 месте. При этом чаще всего он встречается в виде титановой кислоты в минералах. К таким титановым рудам относятся:

  • брукит;
  • анатаз;
  • рутил;
  • первоксит.

Эти минералы наиболее распространены в России, США, Великобритании, Японии, а также Испании, Бельгии, Франции.

Всего известно 4 способа получения этого материала:

  1. Метод электролиза. Соединения рассматриваемого вещества подвергаются воздействию тока огромной силы, который разделяет минерал на составляющие.
  2. Магниетермический способ. На первом этапе получают диоксид титана. Потом его следует отхлорировать в присутствии особого катализатора, поскольку сам по себе процесс слишком заторможенный и вялый. Получается газ, который восстанавливают магнием или натрием. Соединение нагревают, а затем из полученного вещества выплавляют титан.
  3. Рафинирование. Метод, когда диоксид титана подвергают обработке при применении паров йода. Получается йодид титана, который максимально прогревают и подвергают воздействию электрического тока. После окончания воздействия получаются два вещества: йод и собственно титан.
  4. Гидридно-кальциевый метод. Сначала следует получить гидрид титана. После этого разделяют вещество на все вступающие туда компоненты.

В массовой промышленности чаще всего используются 2 и 4 методы, поскольку они помогают получить чистый материал с небольшими затратами.

Уран

Одним из наиболее твердых металлов является уран. Его открыл в 1840 году химик Пелиго. Большой вклад в изучение свойств этого металла сделал Д. И. Менделеев. Радиоактивные свойства урана были выявлены ученым А. А. Беккерелем в 1896 году. Тогда химик из Франции выявленные излучения металла назвал лучами Беккереля. Уран часто встречается в природе. Странами, имеющими наибольшие месторождения урановой руды, являются Австралия, Казахстан и Россия.

Уран

Читайте также:  Физические свойства металловконсультация по химии (10 класс)

Уран

Иридий

Первенство в перечне металлов, отличающихся наибольшей твердостью, занимает иридий. Его открыл в начале XIX века химик из Англии Смитсон Теннант. Иридий обладает следующими физическими свойствами:

  • имеет серебристо-белый цвет;
  • температура его плавления – 2466 оС;
  • температура кипения – 4428 оС;
  • сопротивление – 5,3·10−8Ом·м.

Поскольку иридий является твердейшим металлом на планете, он с трудом поддается обработке. Но его все же применяют в различных промышленных сферах. К примеру, из него изготавливаются небольшие шарики, которые используются в перьях для ручек. Из иридия изготавливают комплектующие к космическим ракетам, некоторые детали для автомобилей и другое.

Иридий

Иридий

В природе встречается очень мало иридия. Находки этого металла являются своего рода свидетельством того, что в месте, где он был обнаружен, падали метеориты. Эти космические тела содержат значительное количество металла. Ученые полагают, что наша планета также богата иридием, но его залежи находятся ближе к ядру Земли.

Прочие по твердости металлы

Титан не является самым твердым металлом. У него достаточно соперников, если оценивать вещества чисто по прочности. Среди самых твердых металлов в мире известны:

Иридий. Этому металлу принадлежит первое место в списке твердости. Именно поэтому его очень редко используют, поскольку он с большим трудом подвергается обработке. В промышленности этот металл используется для изготовления некоторых деталей ракет, маленьких шариков для ручек, а также в машиностроении.

Иридий самый твердый металл

Температура плавления данного вещества — 2466° Цвет — светло-серебристый. Распространен в очень маленьких количествах, обычно метеоритного происхождения.

Рутений. Редкий металл, всего на планете его около 5 тысяч тонн. За один год добывается всего 18 тонн металла. Из-за малого количества металл применяется только в качестве катализатора химических реакций, а также добавляют в титан, чтобы повысить устойчивость к ржавчине.

Хром. Этот материал открыли еще в 1763 году. С тех пор этот голубовато-белый металл используется металлургии, некоторых отраслях науки, а также в машиностроении. Также, как и предыдущие относится к редким видам металлов.

Бериллий. Этот металл применяется в атомной энергетике, а также в изготовлении аппаратов для рентгена, громкоговорителей с высокими частотами, огнеупорных материалов. Сложен в обработке, поскольку вместе со своей твердостью может похвастаться и значительной хрупкостью.

Осмий. По своим свойствам и характеристикам близок к иридию. Это тугоплавкий металл, очень твердый и плохо поддающийся обработке. Получил разнообразное применение в медицине. Например, из этого металла производят детали большинства кардиостимуляторов.

Читайте также:  Внешний и внутренний диаметр труб и трубопроводной арматуры. Как рассчитать параметры труб

Вольфрам. Серебристо-серый металл, занимает первое место по тугоплавкости. Поэтому и используется в элементах накаливания. Также применяется для изготовления тары, в которой хранят радиоактивные материалы, из вольфрама изготавливают многие хирургические инструменты, а также используют в военной промышленности.

Вольфрам

Уран. В отличие от многих других твердых металлов, уран в природе встречается часто. Имеет радиоактивные свойства.

Хром

Бериллий металл
Бериллий
Рутений
Иридий металл

уран

Иридий
Осмий

Твердые металлы с наибольшей плотностью

Одними из самых твердых металлов, так же, являются осмий и иридий. Это вещества из платиновой группы, у них самая высокая, почти одинаковая, плотность.
Иридий открыли в 1803 году. Обнаружил металл химик из Англии Смитсон Теннат, во время исследования природной платины из Южной Америки. Кстати, с древнегреческого «иридий» переводится как «радуга». Иридий - редкий и твердый металл на планете
Иридий — редкий и твердый металл на планете Самый твердый металл добыть довольно сложно, поскольку в природе его почти нет. И часто металл находят в метеоритах, которые упали на землю. По словам ученых, на нашей планете содержание иридия должно быть намного больше. Но из-за свойств металла – сидерофильности – он находится на самой глубине земных недр.
Иридий довольно сложно обработать и термическим, и химическим способом. Металл не вступает в реакцию с кислотами, даже сочетаниями кислот при температуре меньше 100 градусов. При этом, вещество подвержено процессам окисления в царской водке (это смесь соляной и азотной кислот).
Интерес, как к источнику электрической энергии, представляет изотоп иридия 193 m 2. Поскольку период полураспада металла составляет 241 год. Нашел широкое применение иридий в палеонтологии и промышленности. Его используют при изготовлении перьев для ручек и определение возраста разных слоев земли.
А вот осмий открыли на год позже, чем иридий. Этот твердый металл нашли в химическом составе осадка платины, которая была растворена в царской водке. И название «осмий» получилось из древнегреческого слова «запах». Металл не подвержен механическому воздействию. При этом, один литр осмия в разы тяжелее, чем десять литров воды. Впрочем, это свойство пока осталось без применения. Осмий - один из самых твёрдых металлов
Осмий — один из самых твёрдых металлов Осмий добывают на американских и российских рудниках. Богато его месторождение и в ЮАР. Довольно часто металл находят в железных метеоритах. Для специалистов представляет интерес осмий-187, который экспортируется только из Казахстана. С его помощью определяют возраст метеоритов. Стоит отметить, что всего один грамм изотопа стоит 10 тысяч долларов.
Ну а используют осмий в промышленности. И не в чистом виде, а в виде твердого сплава с вольфрамом. Производят из вещества лампы накаливания. Осмий является катализатором при изготовлении нашатырного спирта. Редко из металла изготавливают режущие части для нужд хирургии.

Самый твердый металл в мире — вольфрам

Вольфрам – это химический элемент, самый твердый, если рассматривать его в ряду с другими металлами. Его температура плавления необычайно высока, выше – только у углерода, но это не металлический элемент.
Но природная твердость вольфрама в то же время не лишает его гибкости и податливости, что позволяет выковывать из него любые необходимые детали. Именно его гибкость и теплоустойчивость делает вольфрам идеально подходящим материалом для выплавки мелких деталей осветительных приборов и деталей телевизоров, например. Вольфрам - самый твердый металл в мире
Вольфрам — самый твердый металл в мире Используется вольфрам и в более серьезных областях, например, оружестроении — для изготовления противовесов и артиллерийских снарядов. Этим вольфрам обязан высокому показателю плотности, что делает его основным веществом тяжелых сплавов. Плотность вольфрама близка по показателю к золоту – всего несколько десятых составляют разницу.
На сайте uznayvse.ru можно прочитать какие же металлы являются самыми мягкими, как их используют, и что из них делают. Игорь Артюхов
Игорь АртюховредакторРедакция УзнайВсё.ру
Обнаружив ошибку в тексте, выделите ее и нажмите Ctrl+Enter

  • Алексей ЖировЯ думаю вольфрама не самый твёрдый металл, потому что один советский напильник проточил лунку в кубике из вольфрама2020-12-10 12:49:42
  • Crossava01 блин это было 4 года назад2020-11-29 17:11:56
  • Crossava01 АБЕ Саков, по моему они не смешаются2020-11-29 17:11:32
  • Александр ЗиннерDon Alekhandro, вы тоже, насколько мне известно, немного ошибаетесь. Век отсчитывают с первого года по нулевой. То есть 18-й век начался в 1701 и закончился 1800)))2020-06-09 20:24:20
  • Don AlekhandroЯкорь Морской, правильно он сказал. Девятнадцатый век — это 1800-1899 гг. А восемнадцатый — 1700-1799 гг., соответственно. Поэтому в статье, видимо, очепятка вышла.2020-05-09 21:55:35
  • Якорь МорскойСкажите пожалуйста, а с какого года по Вашему мнению начинается 18 век?2019-04-20 13:58:57
  • Вадим Романовчтобы не было аварий, нужно соблюдать пдд, а не строить алмазные машины. Как бы очевидно.2019-04-08 08:24:42
  • Вадим Романовон и так в тысячу раз меньше, чем на первых автомобилях.2019-04-08 08:23:25
  • Вадим Романови поэтому титан внесли в таблицу Менделеева раньше, чем родился Менделеев и придумал ее. Понятно, чо.2019-04-08 08:21:32
  • Rahim Zeynalovтогда аварии на дорогах не будет не выгодно понимаешь )2019-03-23 03:00:41
  • Ольга Ивановаменделеева давно нет, а таблица до сих пор полностью не заполнена, по мере открытия новых элементов, заполняется и таблица.2018-03-29 11:44:27
  • Fil BazinКак титан могли внести в таблицу в конце восемнадцатого века, когда сам Менделеев Д.И. родился в 1834?2017-12-22 15:44:00
  • Егор АлтаевЛучше тогда сплав Нитинола, он от нагрева восстанавливает свою прежнюю форму которую ему задали, А это никель и титан) хотя и дорого но дешевле того что брать все материалы)2016-08-01 21:39:12
  • Denis KovlenkoБудет автомобиль как 21 Волга.
    Или мобильный телефон Nokia 3310
    Антиквариат который не каждому по душе, и со своими скромными возможностями.2016-07-23 11:44:04
  • Андрей МилинВсегда представлял, а что, если сделать автомобиль из самых лучших материалов. Да, пусть стоимость будет в сто раз больше, но зато износ у деталей будет в тысячу раз меньше)2016-06-01 12:36:23
  • АБЕ СаковА если все эти металлы , смешать в один сплав 1 что получиться интересно2016-05-17 10:08:20
  • Валерийметал будущего космических технологий в связи с иридием и прометием будет являться основным составляющим космическими технологиями построении летающих обектов2015-11-15 13:15:07

17Подпишитесь на нас!Яндекс.ДзенTelegramЯндекс.НовостиВконтакте31469Далее

Томик какой книги в руках сделает вас актуальной персоной этим летом?

Лето – отличное время, чтобы погрузиться в чтение. Представляем подборку актуальных книжных бестселлеров и новинок на любой читательский вкус….73561Далее

Не отличить: 4 рецепта соусов из Макдональдса

Макдональдс ушёл из России, и многие будут скучать по его вкусным и необычным соусам, с которым даже обычная булочка с котлетой покажется деликатесом.613116Далее

Где, как и когда: 9 тонкостей сбора грибов

В сборе грибов, как и в рыбалке, для многих главным является не улов, а сам процесс. Провести время на свежем воздухе, в лесу, слушая тишину и птиц —…328606Далее

Как нас обманывают в магазинах одежды, чтобы мы купили вещь: 4 трюка

Если после примерки новой вещи дома вы остались разочарованы, будьте уверены: вы попались на один из магазинных трюков. Редакция uznayvse.ru – о…42664Далее

5 фильмов, в которых богатые получают по заслугам

Тема социального неравенства широко обсуждается в обществе, политике и литературе. В кинематографе мы часто наблюдаем истории людей, которые…65836Далее

11 небанальных фильмов для новогоднего настроения

Устали от фильмов Рязанова и Гайдая, перемежающихся с «Одним дома» и «Гарри Поттером», которых традиционно крутят по телевизору в преддверии Нового…

Что относится к твердым металлам и где применяют их сплавы

За последние пару десятилетий твердые сплавы стали активно использоваться. Без них не обходится горная промышленность, где они применяются в бурении. В обрабатывающих отраслях их используют для резания, штамповки и волочения, наплавки деталей, способных изнашиваться быстрее других.

Что относится к твердым металлам и где применяют их сплавы

Использование твердых сплавов во многих сферах промышленности связано с тем, что инструменты из них дают возможность значительно повысить производительность оборудования и снизить себестоимость изделий. Немаловажен и тот факт, что наплавленные твердыми сплавами детали работают до истирания в десятки раз дольше, чем их ненаплавленные аналоги.

В основе всех сплавов лежат карбиды вольфрама, молибдена, хрома, титана или марганца. За счет карбидов сплавы обладают высокой твердостью и устойчивостью к износу. Помимо этого, в состав твердых сплавов входят кобальт, никель, железо.

Твердые сплавы обычно делят на:

  • литые;
  • порошкообразные;
  • металлокерамические.

1. Литые и порошкообразные твердые сплавы.

Они используются для наплавки деталей, склонных к быстрому износу.

Литые твердые сплавы – стеллиты и стеллитоподобные – имеют высокую коррозионную стойкость, в частности, в серной кислоте; не изменяют своих свойств при значительных повышениях температуры (стеллиты – до +8 000 °С, стеллитоподобные до – +6 000 °С).

Читайте также:  Самодельная зернодробилка своими руками: чертежи, размеры. Зернодробилка своими руками — принцип работы, виды и особенности создания устройства для переработки зерновых культур

Стеллиты и сормайт распространены в машиностроении, где используются для наплавки деталей и инструментов, работающих без ударов. Также их используют в тех случаях, когда деталь после механической обработки должна оставаться ровной и чистой. Без них не обойтись, например, при изготовлении гибочных и вытяжных матриц, центров станков, измерительных скоб, колец для протяжки. Такие сплавы обладают высокой жаропрочностью, поэтому используются для наплавки деталей, задействованных в работах при высоких температурах. Речь идет об элементах металлургического оборудования, ножах для горячей резки, клапанах двигателей внутреннего сгорания.

Для наплавки литых твердых сплавов подходят стальные (железные) и чугунные детали любого сечения и конфигурации. Для покрытия рабочей поверхности слоем сплава применяют газовую горелку с ацетиленокислородным пламенем.

2. Порошкообразные твердые сплавы – вокар и сталинит – используются преимущественно для наварки деталей, осуществляющих грубую работу. В таком случае допускается максимальное количество пор и раковин и отсутствие финальной обработки наваренной поверхности. Данный метод применяют для щек дробилок, зубьев экскаваторов, землечерпалок, пр.

Вокар содержит 86 % вольфрама, 9,5–10,5 % углерода, до 0,5 % кремния и до 2,5 % железа; сталинит – 16–20 % хрома, 8–10 % углерода, 13–17 % марганца, до 3 % кремния, остальное – железо.

Наварка порошкообразных твердых сплавов осуществляется при помощи электрической дуги постоянного тока по способу Бенардоса, то есть посредством угольного электрода. Перед наваркой обрабатываемую поверхность устанавливают горизонтально, наносят на нее тонкий (0,2–0,3 мм) слой флюса, то есть прокаленной буры, и слой порошкообразного твердого сплава толщиной 3–5мм.

Далее электрод соединяется с отрицательным полюсом, деталь – с положительным. Между электродом и деталью образуется электрическая дуга, которая плавит порошкообразный сплав и верхние слои основного материала. Отметим, что в процессе работы образуется небольшая ванночка расплава. При сварке электрод должен двигаться зигзагообразно, при этом дуга постоянно переносится по поверхности твердого сплава.

3. Металлокерамические твердые сплавы.

Читайте также:  Характеристика отрасли: черная и цветная металлургия.

Металлокерамические твердые сплавы

Данные соединения используются как пластинки к режущему инструменту. Стоит пояснить, что оборудование с пластинками твердых сплавов сегодня очень распространено в заводской практике, где позволяет осуществлять скоростное резание.

Одним из ключевых свойств металлокерамических твердых соединений считается их высокая твердость и способность резать даже при температуре до +1 000…+11 000 °С. Дело в том, что их режущие качества обеспечиваются карбидами вольфрама. Некоторые марки сплавов также включают в себя карбиды титана, а роль связующего вещества обычно играет кобальт.

При производстве пластинок металлокерамических твердых сплавов порошкообразные компоненты перемешиваются, после чего смесь подвергается давлению в пресс-формах 1 000–4 200 кгсм2. Полученные заготовки отправляются в электропечи, где спекаются при температуре +1 400…+15 000 °С. При таких условиях кобальт плавится, обволакивая зерна карбидов, за счет чего обеспечивается их связывание. При производстве твердых сплавов вместо прессования и спекания нередко выполняют одну операцию, а именно горячее прессование.

Пластинками твердых сплавов оснащают резцы, сверла, фрезы, зеркеры и другие инструменты. Для этого пластины напаивают или механически крепят на державки.

Классификация по химическим свойствам

6. Щелочные металлы


Твердый металлический натрий

Примеры: натрий, калий, рубидий, литий, цезий и франций.

Щелочь относится к основной природе гидроксидов металлов. Когда эти металлы реагируют с водой, они образуют сильные основания, которые легко нейтрализуют кислоты.

Они настолько реактивны, что обычно встречаются в природе в слиянии с другими веществами. Карналлит (хлорид калия-магния) и сильвин (хлорид калия), например, растворимы в воде и, таким образом, легко извлекаются и очищаются. Нерастворимые в воде щелочи, такие, как фторид лития, также существуют в земной коре.

Одно из самых популярных применений щелочных металлов — использование цезия и рубидия в атомных часах, наиболее точных из известных эталонов времени и частоты. Литий используется в качестве анода в литиевых батареях, композиты калия используются в качестве удобрений, а ионы рубидия используются в фиолетовых фейерверках. Чистый металлический натрий широко используется в натриевых лампах, которые очень эффективно излучают свет.

5. Щелочноземельные металлы


Изумрудный кристалл, основной минерал бериллия.

Примеры: бериллий, кальций, магний, барий, стронций и радий.

Щелочноземельные металлы в стандартных условиях мягкие и серебристо-белые. Они имеют низкую плотность, температуру кипения и температуру плавления. Хотя они не так реакционноспособны, как щелочные металлы, они очень легко образуют связи с элементами. Как правило, они вступают в реакцию с галогенами, образуя галогениды щелочноземельных металлов.

Все они встречаются в земной коре, кроме радия, который является радиоактивным элементом. Радий уже распадался в ранней истории Земли из-за относительно короткого периода полураспада (1600 лет). Современные образцы поступают из цепочки распада урана и тория.

Щелочноземельные металлы имеют широкий спектр применения. Бериллий, например, используется в полупроводниках, теплопроводниках, электрических изоляторах и в военных целях. Магний часто сплавляют с цинком или алюминием для получения материалов со специфическими свойствами. Кальций в основном используется в качестве восстановителя, а барий используется в вакуумных трубках для удаления газов.

4. Переходные металлы

Примеры: титан, ванадий, хром, никель, серебро, вольфрам, платина, кобальт.

Большинство элементов используют электроны из своей внешней оболочки для связи с другими элементами. Переходные металлы, однако, могут использовать две крайние оболочки для соединения с другими элементами. Это химическая особенность, которая позволяет им связываться со многими различными элементами в различных формах.

Они занимают среднюю часть таблицы Менделеева, служа мостом между (или переходом) между двумя сторонами таблицы. Более конкретно, есть 38 переходных металлов в группах с 3 по 12 периодической таблицы. Все они являются пластичными, податливыми и хорошими проводниками тепла и электричества.

Многие из этих металлов, такие как медь, никель, железо и титан, используются в конструкциях и в электронике. Большинство из них образуют полезные сплавы друг с другом и с другими металлическими веществами. Некоторые из них, включая золото, серебро и платину, называются благородными металлами, потому что они крайне инертны и устойчивы к кислотам.

3. Постпереходные металлы


Висмут в виде синтетических кристаллов

Примеры: алюминий, галлий, олово, свинец, таллий, индий, висмут.

Постпереходные металлы в периодической таблице — это элементы, расположенные справа от переходных металлов и слева от металлоидов. Из-за своих свойств они также называются «бедными» или «другими» металлами.

Физически они хрупки (или мягки) и имеют более низкую температуру плавления и механическую прочность, чем переходные металлы. Их кристаллическая структура довольно сложна: они проявляют ковалентные или направленные эффекты связи.

Различные металлы этого семейства имеют различное применение. Алюминий, например, используется для изготовления оконных рам, кухонной посуды, банок, фольги, деталей автомобилей. Оловянные сплавы используются в мягких припоях, оловянных и сверхпроводящих магнитах.

Индиевые сплавы используются для изготовления плоских дисплеев и сенсорных экранов, а галлий — в топливных элементах и полупроводниках.

2. Лантаноиды


1-сантиметровый кусок чистого лантана

Примеры: лантан, церий, прометий, гадолиний, тербий, иттербий, лютеций.

Лантаноиды — это редкоземельные металлы с атомными номерами от 57 до 71. Впервые они были обнаружены в 1787 году в необычном черном минерале (гадолините), обнаруженном в Иттербю, Швеция. Позже минерал был разделен на различные элементы лантаноидов.

Лантаноиды — это металлы с высокой плотностью, плотность которых колеблется от 6,1 до 9,8 г/см³, и они, как правило, имеют очень высокие температуры кипения (1200-3500 °C) и очень высокие температуры плавления (800-1600 °C).

Сплавы лантаноидов используются в металлургии из-за их сильных восстановительных способностей. Около 15 000 тонн лантаноидов ежегодно расходуется в качестве катализаторов и при производстве стекол. Они также широко используются в лазерах и оптических усилителях.

Некоторые исследования показывают, что лантаноиды могут быть использованы в качестве противораковых средств. Лантан и церий, в частности, могут подавлять пролиферацию раковых клеток и способствовать цитотоксичности.

2. Типы кристаллических решеток

Все металлы в твердом состоянии представляют собой кристаллы. Кристалл – это совокупность атомов, расположенных в пространстве не хаотично, а в геометрически правильной последовательности. Пространственное расположение атомов и образует кристаллическую решетку.

В узлах пространственной кристаллической решетки металла правильно расположены положительно заряженные ионы, а между ними перемещаются свободные электроны – электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в единое целое. Эта связь, называемая металлической, возникает между атомами металлов за счет перекрывания электронных облаков внешних электронов. Металлическая связь отличается от неполярной ковалентной связи своей ненаправленностью. В кристалле металлического типа электроны не закреплены между двумя атомами, а принадлежат всем атомам данного кристалла, т. е. делокализованы. К особенности структуры металлических кристаллов относятся большие координационные числа – 8÷12, которым соответствует высокая плотность упаковки.

Читайте также:  Размеры отверстий под резьбу: таблицы, инструменты, процесс нарезки. Диаметр отверстия под метрическую резьбу: таблица размеров по ГОСТ

Кристаллическая решетка каждого металла состоит из положительно заряженных ионов одинакового размера, расположенных в кристалле по принципу наиболее плотной упаковки шаров одинакового диаметра.

Различают три основных типа упаковки, или кристаллической решетки.

1. Объемноцентрированная кубическая решетка с координационным числом, равным 8 (натрий, калий, барий). Атомы металла расположены в вершинах куба, а один – в центре объема. Плотность упаковки шарообразными ионами в этом случае составляет 68 %.

Объемноцентрированная кубическая решетка

2. Гранецентрированная кубическая решетка с координационным числом, равным 12 (алюминий, медь, серебро). Атомы металла расположены в вершинах куба и в центре каждой грани. Плотность упаковки – 74 %.

Гранецентрированная кубическая решетка

3. Гексагональная решетка с координационным числом 12 (магний, цинк, кадмий). Атомы металла расположены в вершинах и центре шестигранных оснований призмы, а еще три – в ее средней плоскости. Плотность упаковки – 74 %.

Гексагональная решетка

Из-за неодинаковой плотности атомов в различных направлениях кристалла наблюдаются разные свойства. Это явление, получившее название анизотропия, характерно для одиночных кристаллов – монокристаллов. Однако большинство металлов в обычных условиях имеют поликристаллическое строение, т. е. состоят из значительного числа кристаллов, или зерен, каждое из которых анизотропно. Разная ориентировка отдельных зерен приводит к усреднению свойств поликристаллического металла.

Особенности кристаллических решеток обусловливают характерные физические свойства металлов.

Технологические и химические свойства твердых металлов

К технологическим свойствам относятся свариваемость, жидкотекучесть, ковкость, обрабатываемость резанием, пр. От этих особенностей зависит возможность осуществления каких-либо операций, так как они влияют на пригодность металла к обработке определенными способами.

Читайте также:  Принцип действия и разновидности газовых резаков по металлу

Свариваемость позволяет добиваться надежных сварных соединений без трещин и иных дефектов, в том числе на прилегающих к шву участках. В некоторых случаях металл может подходить для сварки одним методом, но давать некачественный результат при смене технологии. Так, элементы из дюралюминия удовлетворительно скрепляются при помощи точечной сварки, чего не скажешь о соединении методом газовой сварки. На чугуне получаются хорошие швы за счет газовой сварки с подогревом и слабые при дуговой.

Жидкотекучесть – это свойство, которое дает возможность заливать горячие металлы и их сплавы в литерную форму.

Ковкость, то есть свойство твердых металлов и сплавов изменять форму под действием давления.

Обрабатываемость резанием позволяет относительно легко работать с металлом острым режущим инструментом: резцом, фрезой, пр. Данное свойство очень важно на таких этапах механической обработки, как резание, фрезерование, пр.

Под химическими свойствами понимают способность металлов вступать в реакцию с другими веществами, в том числе, с кислородом. Если металл быстро реагирует с вредными для него элементами, это приводит к быстрой потере им свойств. Разрушение металлов под действием окружающей среды – это коррозия. Отрицательно сказываться на состоянии материала могут воздух, влага, растворы солей, кислот, щелочей. Для защиты изделий от всех перечисленных факторов используют специальные нержавеющие, кислотостойкие и другие виды сталей.

Нахождение металлов и способы их получения

Самый распространенный на земле элемент-металл – алюминий. За ним следуют железо, кальций, натрий.

Некоторые металлы встречаются в природе в самородном состоянии (золото, ртуть, платина), но в основном они находятся в природе в виде оксидов и солей.

Получение металлов происходит с помощью металлургии (получение из руд), пирометаллургии (получение с помощью реакции восстановления при высокой температуре), гидрометаллургии (извлечение из руд в виде растворимых соединений), электрометаллургии (получение металлов электролизом расплавов и растворов их соединений).

Заключение

Таблица предела прочности металлов

МеталлОбозначениеПредел прочности, МПа
Свинец Pb 18
Олово Sn 20
Кадмий Cd 62
Алюминий Al 80
Бериллий Be 140
Магний Mg 170
Медь Cu 220
Кобальт Co 240
Железо Fe 250
Ниобий Nb 340
Никель Ni 400
Титан Ti 600
Молибден Mo 700
Цирконий Zr 950
Вольфрам W 1200

Тантал

Открытому в 1802 гуду металлу, названному танталом, достается третье место в нашем списке. Его обнаружил шведский химик А. Г. Экеберг. Долгое время считалось, что тантал тождественен ниобию. Но немецкому химику Генриху Розе удалось доказать, что это два разных элемента. Выделить тантал в чистом виде смог ученый Вернер Болтон из Германии в 1922 году. Это очень редкий металл. Больше всего залежей танталовой руды было обнаружено в Западной Австралии.

Тантал

Тантал

Читайте также:  Расход алмазных сверел при сверлении гранита и мрамора

Благодаря своим уникальным свойствам, тантал является очень востребованным металлом. Он применяется в различных сферах:

  • в медицине из тантала изготавливают проволоку и другие элементы, которые могут скреплять ткани и даже выступать заменителем кости;
  • сплавы с этим металлом устойчивы к агрессивной среде, благодаря чему они используются при изготовлении авиакосмической техники и электроники;
  • тантал также применяют для создания энергии в атомных реакторах;
  • элемент широко применяется в химической промышленности.

Мартенситностареющая сталь

Это особая разновидность сверхвысокопрочных сталей, прочность которых определяется интерметаллическими соединениями, а не углеродом. Такие стали известны своей прочностью и твёрдостью, не теряя пластичности.

Читайте также: Как сделать пиратскую карту ( способ 5 )

Одним из основных элементов, используемых в мартенситностареющей стали, является 25-процентная массовая доля никеля. Его лучшее соотношение веса и прочности, чем у большинства других сталей, позволяет широко использовать мартенсит в ракетах и обшивках ракет.

13

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.

Береза Шмидта — самое прочное дерево

Читайте также: Интересные факты о Зигмунде Фрейде —

Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.

Береза Шмидта прочнее железа

Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом. Зато, по данным , могут вырастать до 150 метров в высоту.

Волокна из сверхвысокомолекулярного полиэтилена (Dyneema)

Dyneema — это прочное и сверхлёгкое полиэтиленовое волокно, которое в основном используется в качестве композитных пластин для создания бронированных автомобилей. Оно легче воды, а останавливает пули и в 15 лучше стали.

Также используется для изготовления альпинистского снаряжения, рыболовных верёвок, тетивы для лука. Он имеет высокий предел текучести 2,4 ГПа и низкий удельный вес 0,97 г/см³.

Тест по теме

  1. /10Вопрос 1 из 10

Сколько элементов Периодической системы относятся к металлам?

  • 66
  • 82
  • 100
  • 104

Начать тест Доска почётаДоска почёта

Чтобы попасть сюда — пройдите тест.


  • Илья Васечко10/10

  • Дархан Дарибаев10/10

  • Лиза Комиссарова10/10

  • Софа Данилова10/10

  • Наири Аракелян10/10

  • Вадим Якшимбетов10/10

  • Лилия Алишева10/10

  • Анастасия Анисина10/10

  • Влад Сергеев9/10

  • Руслан Гайс9/10

Наноцеллюлоза

Ученые вывели этот материал из древесного волокна.

Ученые вывели этот материал из древесного волокна. И это тот случай, когда самое прочное дерево даст фору стали. Впрочем, первое еще и намного дешевле. Вообще, наноцеллюлозу называют главным конкурентом стекла и углеродного волокна. Разработчики уверены, что это материал будущего, который будет активно применяться при изготовлении брони и даже биотоплива.